数学问题的提出是衡量课程对学生学习的影响的一个尺度外文翻译资料

 2022-12-29 01:12

本科毕业设计(论文)

外文翻译

数学问题的提出是衡量课程对学生学习的影响的一个尺度

作者:Jinfa Cai John C Moyer,等

国籍:美国

出处:Educ Stud Math

摘要:在本研究中,我们以问题提出来衡量中学课程对学生学习的影响。在初中使用标准课程的学生在高中的表现与使用传统课程的学生一样好或更好。这项研究的结果不仅显示了人们对使用基于标准的改革课程的学生所期望的优势,而且也支持了将问题提出作为衡量课程对学生学习影响的一种方法的可行性和有效性。此外,本研究的结果表明,采用定性评分法评估学生对提出问题任务的不同反应特征是有用的。讨论了本研究的教学和方法学意义,以及未来的研究方向。

关键字:问题提出; 课程; 纵向研究; 评估; 问题解决; 代数学; 初中; 高中

将解决数学问题融入数学教学由来已久(Stanic和Kilpatrick,1988)。相比之下,问题提出的研究相对较新(Cai和Hwang,2002;Kilpatrick,1987;Silver,1994;Silver和Cai,1996)。然而,世界各地都在致力于将问题的提出纳入不同阶段的数学教育中(如:1986年中国教育部;Hashimoto,1987;Healy,1993;Keil,1964/1967;van den Brink,1987)。许多教师对使问题提出成为课堂教学中更重要的一环很感兴趣。这是可以理解的,因为提出问题这一智力活动长期以来被认为在科学研究中至关重要(Einstein和Infeld,1938)。事实上,爱因斯坦说过,提出一个有趣的问题比解决那个问题更重要。

尽管有兴趣将数学问题提出融入课堂实践,但对于学生产生自己的问题时所涉及的认知过程以及问题提出作为评估工具的方式知之甚少。此外,很少有研究去证实教学策略是否可以有效地促进生产性问题的提出,甚至少有研究去确定让学生参与问题提出活动是否是一种有效的教学策略。本研究的目的是通过调查问题的提出来解决其中的一些问题,并以此作为课程对学生学习影响的衡量标准。

1背景与理论基础

    1. Liecal项目

本研究是一个名叫课程对代数学习影响的纵向研究(Liecal项目)的大型研究项目的一部分。Liecal项目旨在通过纵向比较两种课程对学生学习代数的影响来研究基于标准的课程——称为“关联数学课程”(CMP)(Lappan、Fey、Fitzgerald、Friel和Phillips,2002年)和更传统的课程(以下称为“非CMP课程”)之间的异同。我们不仅调查了CMP课程和非CMP课程影响学生成绩的方式和情况,而且调查了这些改革和传统课程阻碍或增进成绩的特点。在Liecal项目中,选择了相关数学课程进行调查,原因有几个,其中最重要的一个原因是,该课程的实施范围比中学阶段任何其他所谓的“改革课程”都要广泛。它已在全部的50个州和一些别的国家使用(Rivette、Grant、Ludema和Rickard,2003年;Show-Me Center,2002年)。

在Liecal项目的前几年,我们比较了使用CMP课程的中学生在课堂上的表现和使用非CMP课程的中学生在课堂上的表现。我们发现,在评估概念理解和解决问题的开放式任务中,CMP学生3年的增长率明显高于非CMP学生(Cai、Wang、Moyer和Nie,2011年)。特别地,我们使用生长曲线模型进行的分析表明,三年中,CMP学生的开放式任务成绩显著高于非CMP学生(t=2.79,plt;0.01)。CMP学生的平均年增长率为25.09%,而非CMP学生的平均年增长率为19.39%。同时,CMP和非CMP的学生在三年的评估计算和等式求解技能的多选任务中表现出相似的成绩增长。这些发现表明,与非CMP课程相比,CMP课程的使用在概念理解和问题解决方面具有显著的优势。此外,这些相对较大的概念性成果并非以损失基本技能为代价,这一点可以从CMP和非CMP学生在计算和方程求解任务上得出的比较结果中得到证明。

目前,我们在同一城市学区对同一群初中学生进行了高中阶段的跟踪调查,调查不同类型的初中数学课程的使用对他们高中阶段数学学习的影响。具体来说,我们正在研究初中学生的课程经历如何影响他们在高中的学习。我们通过收集初中阶段的概念理解、符号操作技能、解决问题技能的发展与高中阶段数学学习之间的关系的经验证据来做到这一点。我们评估这种关系的一种方法是让学生提出自己的问题。

1.2学生的问题提出与问题解决

如果问题的提出确实是数学教学中一项重要的智力活动,我们应该能够证明教师和学生都有能力提出有意义的数学问题。因此,问题提出的一个重要研究方向就是探究教师和学生能够提出什么样的问题(Cai,1998;Cai和Hwang,2002;English,1997a,b;Silver和Cai,1996;Silver,Mamona-Downs,Leung和Kenney,1996;Stoyanova和Ellerton,1996)。在这一调查中,研究人员通常会设计一个问题情境,并要求受试者提出可以利用情境中给出的信息解决的问题。在校学生、职前教师和在职教师都参与了这一数学问题提出的研究。总的来说,这项研究的结果表明,学生和教师都有能力提出有趣和重要的数学问题。

调查的第二个重要方向是探讨问题提出与问题解决之间的联系(例如,Cai,1998;Cai和Hwang,2002;Ellerton,1986;Kilpatrick,1987;Silver和Cai,1996)。Kilpatrick(1987)提出了一个理论论点,即受试者提出的问题的质量可以作为他们解决问题的能力指数。一些研究人员还进行了实证研究,研究问题提出和问题解决之间的潜在联系。Ellerton(1986)将8个高能力幼儿提出的数学问题与8个低能力幼儿提出的数学问题进行了比较,要求每个人都提出一个对她或他的朋友来说很难解决的数学问题。Ellerton报告说,能力更强的学生提出的问题比那些能力不足的学生提出的问题更复杂。

同样,Silver和Cai(1996)分析了500多名中学生对一项任务的反应,该任务要求他们根据驾驶情况提出三个问题。根据学生提出的问题的类型、可解决性和复杂性进行分析。此外,Silver和Cai使用八个开放式任务来衡量学生的数学问题解决能力。他们发现学生解决问题的表现与他们提出问题的表现高度相关。与不太成功的问题解决者相比,好的问题解决者产生更多、更复杂的数学问题。

尽管Silver和Cai(1996)用与他们在研究中使用的问题提出任务基本无关的任务来衡量学生的问题解决能力,但在其他人使用的任务中,问题提出和问题解决部分与相同的数学以及上下文结构有关。例如,蔡和他的同事(蔡,1998;蔡和黄,2002)利用彼此密切相关的问题提出和问题解决的任务来检验中美学生的解决问题和提出问题的表现。蔡和黄(2002)发现,美国学生的问题解决能力和问题提出能力之间的关系不同于中国学生。也就是说,对于中国样本来说,解决问题和提出问题之间的联系更为紧密,而对于美国样本来说,这一联系则要弱得多。蔡和黄认为,美国学生解决问题和提出问题之间的联系薄弱,并不意味着他们的解决问题或提出问题缺乏普遍性。相反,美国学生提出问题的多样性与他们解决问题的成功之间较弱的联系可能是由于美国学生几乎从未使用过抽象策略。因此,蔡和黄假设,提出各种问题类型的能力与中国样本中所用策略的相对抽象性密切相关。

1.3课堂中的问题提出

教育研究的最终目标是提高学生的学习水平。研究问题提出也不例外。和问题解决一样,问题提出也可以看作是一种课堂活动,现今将数学问题提出整合到课堂上的兴趣也越来越大。研究人员认为,学生提出的问题有助于培养学生的创造力(Silver,1997;Yuan和Sriraman,2011),并且更有可能将数学与学生自身的兴趣联系起来,而传统教科书的问题往往不是这样。从各个学科的角度来看,阅读研究表明,让学生参与问题的提出,可以在阅读理解方面取得显著的进步。元分析显示,使用标准化测试的影响大小为0.36,使用测试者自身开发的测试的影响大小为0.86(Rosenshine、Meister和Chapman,1996年)。

事实上,至少有两个原因可以让人相信,参与问题提出的活动会对学生的学习产生积极的影响。首先,问题的提出往往是一些对认知要求较高的任务(Cai和Hwang,2002年)。无论是根据给定的情况生成新的问题,还是重新设计现有的问题,提出问题通常都要求提出者超越问题解决层面,以反映任务的更大结构和目标。由于具有不同认知要求的任务容易诱发不同类型的学习(Doyle,1983),问题提出活动的高认知要求可以为学生丰富的数学发展提供智力环境。这些活动可以促进学生的概念理解,培养他们的推理和数学交流能力,并赢得他们的兴趣和好奇心(NCTM,1991年)。其次,解决问题的过程往往涉及到辅助问题的产生和解决(Polya,1957年)。因此,提出复杂问题的能力应包括更强大的问题解决能力(例如,Cai和Hwang,2002年)。因此,鼓励学生提出问题不仅有助于培养学生对问题情境的理解,而且有助于培养学生更高级的问题解决策略。

虽然理论上讲,让学生参与问题提出的活动以理解和提高他们的数学学习是合理的,但需要更多的实证研究来证明实际效果。系统地研究数学探索的一般效果可以以阅读的研究为参照,并着重研究学生数学学习中的问题提出活动。在国际比较研究的基础上(Cai和Hwang,2002),Lu和Wang及其同事(Lu和Wang,2006;Wang和Lu,2000)发起了一个关于数学情境和问题提出的项目。该项目有两个相互关联的重要组成部分。一是教材的系统开发,培养了在给定数学情境的基础上定位问题的能力。这些教材——包括数学情境和问题提出的任务——并不是用来取代课本的,而是用来补充课本的常规问题。该项目的第二个组成部分是教材的系统实施。到2006年,中国10个省的300多所学校参与了该项目。教师们接受了在课堂上使用数学情境和问题提出任务的培训。最重要的是,教师们接受了如何发展数学情境和问题提出的培训(Lu和Wang,2006)。通过参与问题提出活动,学生表现得到了改善(Cai和Nie,2007;Lu和Wang,2006)。

Singer及其同事(Singer,2009;Singer和Moscovici,2008)也记录了专注于问题提出策略的系统培训的效果。这些问题提出策略,包括使用不同的表示转换问题、通过添加新的操作或条件进行问题扩展、通过评估异同来比较各种问题、分析不完整或冗余的问题、提高学生提出有意义问题的能力。然而,有趣的是,很少有研究涉及问题提出,主要是将问题提出作为让学生参与问题提出活动的效果的度量。很少有研究使用问题提出来衡量课程或数学课程的广泛影响。

1.4以问题提出衡量课程效果

在问题提出研究中有许多未解决的研究问题(Cai,2011)。比如问题提出在评估中的使用。问题提出的倡导者们通常都会告诉我们其对学生学习的潜在好处,即参与数学问题提出活动可以提供参与者许多问题、方法和解决方案而不仅仅是其中之一,从而促进学生的创造力以及参与真实的数学活动。然而,一些研究人员也发现,问题提出的任务可以揭示学生数学思维的有趣和重要的一面(Cai,1998;Cai和Hwang,2002)。例如,蔡和黄在一系列点模式的背景下研究了中国学生的问题提出。他们发现,在解决模式问题时,问题提出的典型进展说明了学生思维中相应的进展:收集数据,分析数据的趋势,最后做出预测。

此外,如果问题提出的活动将在课堂中成为教学的一个常规部分,那么自然会考虑到问题提出是否会成为教学目标之一。如果是这样,怎么做呢?即使问题提出不是教学目标,当课堂上把问题提出作为一种让学生学习重要概念和技能并提高解决问题能力的手段时,考虑将生成性的问题提出的活动作为与这些概念、技能和能力相关的评估的一部分似乎是合理的。当使用问题提出作为评估的一部分时,人们会期望发现什么?

本研究为了解决这个问题以问题提出为工具,探讨CMP课程对学生长期学习的影响。由于CMP课程可以说是基于问题的课程,因此将Liecal中学项目(Cai等人,2011)的研究结果与基于问题学习(PBL)对医学生表现的有效性的研究结果进行比较具有指导意义(Barrow,2000;Hmelo Silver,2004;Norman和Schmidt,1992;Vernon和Blake,1993)。研究人员发现,在评估概念理解和解决问题能力的临床部分,PBL学生的表现优于非PBL(如讲课)学生。此外,PBL和非PBL学生在实际知识测量方面的表现相似。当这些医学生稍后再次接受评估时,PBL学生不仅在临床部分表现优于非PBL学生,而且在实际知识测量方面表现也优于非PBL学生(Norman和Schmidt,1992;Vernon和Blake,1993)。这一结果可能意味着,在PBL环境中学习的概念理解和解决问题的能力有助于在更长的时间间隔内保留和获取实际知识。<!--

剩余内容已隐藏,支付完成后下载完整资料


英语原文共 14 页,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[273112],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。