使用MATLAB / SIMULINK对汽车发动机进行实时控制外文翻译资料

 2023-01-20 11:01

Automotive Engine Modeling for Real-Time Control Using MATLAB/SIMULINK

使用MATLAB / SIMULINK对汽车发动机进行实时控制

Robert W. Weeks Modular Systems John J. Moskwa

University of Wisconsin-Madison

威斯康星大学麦迪逊分校

ABSTRACT(摘要)

The use of graphical dynamic system simulation software is becoming more popular as automotive engineers strive to reduce the time to develop new control systems. The use of model-based control methods designed to meet future emission and diagnostic regulations has also increased the need for validated engine models. A previously validated,

nonlinear, mean-torque predictive engine model* is converted to MATLAB / SIMULINKdagger; to illustrate the benefits of a graphical simulation environment. The model simulates a port-fuel-injected, spark-ignition

engine and includes air, fuel and EGR dynamics in the intake manifold as well as the process delays inherent in a four-stroke cycle engine. The engine model can he used in five ways:

bull;As a nonreal-time engine model for testing engine control algorithms

bull; As a real-time engine model for hardware-in-theloop testing

bull; As an embedded model within a control algorithm or observer

bull; As a system model for evaluating engine sensor and actuator models

bull; As a subsystem in a powertrain or vehicle dynamics mode

随着汽车工程师努力缩短开发新控制系统的时间,使用图形动态系统仿真软件变得越来越流行。通过基于模型控制的方法,去设计满足未来的排放标准,诊断法规也增加了对已经确认的的发动机模型的需求。先前通过MATLAB/SIMULINK验证的发动机平均值模型来说明图像仿真环境的优点。该模型模拟燃料喷射的火花点火发动机,并且包括进气歧管中的空气,燃料和EGR动力学以及四冲程循环发动机中过程中的延迟。发动机模型可以被用以下五个方面:

  • 作为测试发动机的非实时的发动机模型控制算法
  • 作为硬件在循环测试中的实时发动机模型
  • 作为控制算法内的嵌入模型或观察员
  • 作为评价发动机传感器的系统模型和执行器型号
  • 作为动力系统或车辆动力学中的子系统模型

Although developed and validated for a specificengine, the model is generic enough to be used for awide range of spark-ignition engines. Modularprogramming techniques reduce model complexity by dividing the engine and control system into hierarchical subsystems

虽然为特定发动机开发和验证,但该型号通用,足以用于各种火花点火发动机。 模块化编程技术通过将发动机和控制系统划分为分层子系统来降低模型复杂性

INTRODUCTION(引言)

Dynamic system simulation software is an important tool for developing reliable, low emission engine and powertrain control systems. Several companies market software (and hardware) that can be used to rapidly

simulate a dynamic system and its controller using various combinations of PC and/or workstation technology. Many of these companies provide

software tools that allow development of libraries of component models. As these component model libraries are developed, new control systems are easily simulated by reusing previously built subsystems

动态系统仿真软件是开发可靠,是低排放发动机和动力总成控制系统的重要工具。 几家公司可以使用各种PC和/或工作站技术的组合来销售可用于快速模拟动态系统及其控制器的软件(和硬件)。 许多这些公司提供允许开发组件模型库的软件工具。 随着这些组件模型库的开发,新的控制系统很容易通过重用以前构建的子系统来模拟。

In an effort to develop some of these reusable subsystem models, a previously validated mean torque predictive engine model was converted from FORTRAN to MATLAB / SIMULINK. The SIMULINK engine model is simulated within a larger system model that also includes sensor, actuator and engine controller subsystem models

为了开发这些可重复使用的子系统模型,先前验证过的平均扭矩预测发动机模型从FORTRAN转换为MATLAB / SIMULINK。 SIMULINK发动机模型在更大的系统模型中进行模拟,其中还包括传感器,执行器和发动机控制器子系统模型。

The paper begins with an overview of the engine and control system model briefly describing the various subsystems. Additional detail is provided for the engine modelrsquo;s intake manifold subsystem before a series of example simulations are examined. The example simulations illustrate how mean torque predictive models can be useful for predicting a number of variables important to the control system engineer. Execution times for the model are provided in the appendix、

本文首先简要介绍了发动机各种子系统和控制系统模型。 在对一系列示例模拟进行检查之前,为发动机型号的进气歧管子系统提供了额外的细节。 示例仿真说明了对于控制系统工程师重要的多个变量的预测意义如何。 模型的执行时间在附录中提供。

Figure 1: Root level of the SIMULINK engine and control system model

图1:SIMULINK发动机和控制系统模型的级别

ENGINE AND CONTROL SYSTEM MODELS(发动机和控制系统模型)

This section briefly describes the uppermost (or 'root')level of the engine and control system model shown in Fig. 1. This level of the model is displayed when the file 'engsim.m' is loaded into SIMULINK. The SIMULINK graphical block diagram language allows models to be written in a modular, hierarchical format. The overall

system model in Fig. 1 simulates an engine and control system consisting of an engine, engine sensors and actuators and an engine controller. Inputs to the engine include: throttle angle, an external load torque such as that due to a dynamometer or a transmission, ambient conditions(i.e., atmospheric temperature and pressure) and actuator inputs from various 'actuators' such as fuel injectors, EGR valve, etc. All the important engine variables are 'vectored' and made available to other subsystems such as Sensors, Actuators and Data Analysis. Before a simulation is run the Load Vehicle

Specific Data block must be double-clicked with a mouse. This executes an m-file script which loads all of the vehicle specific parameters into MATLABrsquo;s workspace memory.

By separating vehicle specific data from the subsystem models, the models are more generic, allowing development of one model that simulates several engines

本节主要介绍了图1所示的发动机和控制系统模型的最高(或“根”)水平。当文件“engsim.m”加载到SIMULINK中时,会显示该级别的模型。 SIMULINK图形框图语言允许模型以模块化的分层格式编写。整体系统模式如图一所示,图1模拟仿真发动机,由发动机传感器和执行器以及发动机控制器组成系。发动机的输入包括:节气门角度,例如由于测力计或变速器的外部负载扭矩,环境条件(即大气温度和压力)以及来自各种“执行器”的执行器输入,例如燃料喷射器,EGR阀,所有重要的发动机变量都被“向量化”,并可用于其他子系统,如传感器,执行器和数据分析。在运行模拟之前,必须使用鼠标双击Load VehicleSpecific Data这个模块。这将执行一个m文件的脚本,将所有车辆特定参数加载到MATLAB的工作区的内存中。通过将车辆特定数据与子系统模型分离,模型将更为通用,允许开发一个

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[141585],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。