高层建筑外文翻译资料

 2023-05-30 10:05

Tall Building.

Although there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.

The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.

Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.

In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame. Structural engineers have developed structural systems with a view to eliminating this premium.

Systems in steel.Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.

Frames with rigid belt trusses.In order to tie the exterior columns of a frame structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building (1974) in Milwaukee.

Framed tube.The maximum efficiency of the total structure of a tall building,for both strength and stiffness, to resist wind load can be achieved only if all column elements can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago.The most significant use of this system is in the twin structural steel towers of the 1l0-story World Trade Center building in New York.

Column-diagonal trass tube.The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Center in Chicago,using as much steel as is normally needed for a traditional 40-story building.

Bundled tube.With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building,demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower,at a height of 1450 ft (442 m) ,is the worldrsquo;s tallest building.

Stressed-skin tube system.The tube structural system was developed for improving the resistance to lateral forces (wind or earthquake) and the control of drift (1ateral building movement) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings,and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.

Because of the contribution of the stressed-skin facade,the framed members of the tube require 1ess mass,and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space,is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittsburgh.

Systems in concrete.While tall buildings constructed of steel had an early start,development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings.

Framed tube. As discussed above,the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building,exterior columns were spaced at 5.5-ft (1.68-m) centers, and interior columns were used as needed to support the 8-in. -thick (20-cm) flat-plate concrete slabs.

Tube in tube.Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing t

剩余内容已隐藏,支付完成后下载完整资料


英语译文共 8 页,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[612513],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。